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Nematic electroconvection is studied under asymmetric periodic excitation with a driving electric field
Estd=Est+TdÞ−Est+T/2d. A new dynamic regime, distinguished by subharmonic dynamics, is discovered in
the pattern state diagram between conventional conductive and dielectric regimes. The spatial and temporal
pattern characteristics are investigated experimentally. The dynamics, threshold fields, and selected pattern
wavelengths at onset, calculated from a Floquet analysis of the linearized electrohydrodynamic equations with
a test mode ansatz, are in good agreement with experimental results.
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We study the dynamic response of a classical dissipative
pattern-forming system, electrohydrodynamic convection
(EHC) in nematics, to time-periodic excitation. The linear-
ized dynamic equations in such a system provide information
about the stability of the(uniform) ground state. Floquet
analysis is a standard tool for the characterization of periodi-
cally driven dynamic systems, it yields the asymptotic stabil-
ity of time-periodic solutions. If one of the Floquet multipli-
ers, depending upon the control parameters, passes +1, a
harmonic response in the system variables is expected. If it
passes −1, the response is subharmonic. It has been shown
that in a large class of systems, symmetric excitation[Astd
=Ast+Td=−Ast+T/2d, e.g., driving with sine or square
waves of amplitudeA and periodT], suppresses subharmonic
dynamics[1,2].

EHC represents a canonical system in dissipative pattern
formation. Recent topics of interest include, among others,
aspects of spatial symmetry breaking, localized states, or ef-
fects of low dimensionality[3]. The easy manipulation of
control parameters, convenient time scales, and straightfor-
ward observation techniques, among other advantages, have
triggered its comprehensive investigation in the past(for a
review, see e.g., Ref.[4]). Above a critical driving voltage,
the Carr Helfrich mechanism[5] leads to spatially periodic
director deflectionsw̃ out of the alignment directionx in a
planar nematic cell. They are coupled to a periodic modula-
tion of the electric charge densityq̃ in the cell plane. Striped
patterns appear as the first instability in most cases. They can
be described by a test mode ansatz

w̃sx,z,td = wstdcosskx xdcosskz zd,

q̃sx,z,td = qstdsinskx xdcosskz zd. s1d

Coordinatesx, y are in the cell plane,z is along the cell
normal. The choice ofkz=p /d satisfies the planar anchoring
at the glass plates,w̃sx, ±d/2 ,td=0, whered is the cell gap,
andkx=2p /ldir reflects the spatial periodldir of the director
deflection pattern. At the conventional sine or square-wave
single-frequency excitation, the symmetry of the coupling of
the two system variablessq,wd leads to two observable re-
gimes(Fig. 1), distinguishable by the dynamics ofqstd and

wstd. In the low-frequency(conductive) regime, the charge
densityqstd alternates with the excitation, the director deflec-
tion preserves its sign. In the high-frequency(dielectric) re-
gime, the situation is reversed,wstd alternates with the exci-
tation (see, e.g., time-resolved observations in[6,7]), and
qstd keeps its sign. In the conductive regime, similar to other
convective instabilities, the selected wave numberkth<p /d
is essentially determined by the container dimension. In the
dielectric regime,kth is usually much higher, depending on
viscous, elastic, and electric material properties. Both re-
gimes are well separated at the cutoff frequencyfc, usually
with a jump ofkth. So far, no subharmonic patterns have been
reported in nematic EHC[8].

In our experiments, the cell gap isd=20.2mm. Planar
director alignment alongx is achieved by a polyimid coating
of the glass and rubbing. A fixed sample temperature of
30°C is controlled with a Linkam TMS 600 hot stage. The
mesogenic materialMischung 5, a mixture of phenylben-
zoate derivatives[9], is nematic from room temperature to
70.5°C. Most of the involved material parameters are known

FIG. 1. Measured threshold voltagessPd and selected wave
numbersssd for EHC at a single-square-wave excitation. The cell
gap is 20.2mm. At the cutoff frequencyfc=115 Hz, the selected
wave number jumps from 0.4 to 1.5mm−1. The calculated thresh-
old voltages and wave numberss---d correspond to the(global)
minimum of the neutral curves determined from a linear stability
analysis of the electrohydrodynamic equations.
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from independent experiments. Some unknown parameters,
like the conductivity that varies slightly for individual cells,
were determined by fitting threshold voltages and wave num-
bers at single-frequency square-wave excitation to the mea-
sured characteristics[10,11]. In detail, «i=5.6, «'=6.0, si

=260 s−1, si /s'=1.5, a1=0.2 g cm−1 s−1, g1=−g2
=3.67 g cm−1 s−1, h1=4 g cm−1 s−1, h2=0.4 g cm−1 s−1,
K11=14.9310−7 g cm s−2, K33=13.76310−7 g cm s−2 (cgs
units). The pattern dynamics is recorded using laser diffrac-
tion [11]. The He–Ne laser beam(wavelength lL
=632.85 nm) is diffracted by phase and amplitude gratings
formed by the periodically distorted director field.

In order to simplify the determination of Floquet multipli-
ers in the theoretical stability analysis, it is advantageous to
split the excitation wave form into piecewise constant parts
[12]. In this paper, we generate an asymmetric wave form
Ustd=Ust+TdÞ−Ust+T/2d of the excitation voltageU by
superposition of two commensurate square waves without
phase shift[13]: a low-frequencysf l , fcd square wave with
amplitude Ul, and a high frequencysfh=4f l . fcd) square
wave with amplitudeUh [see graphs in Figs. 4(b), 5(b), and
6(b)]. The experiments show that this has considerable con-
sequences for the dynamics of the system variables and the
selected wavelength. A subharmonic regime is discovered
both in experiment and numerical simulations. Whenfh is
not an even multiple off l, or at a certain phase shift of the
two frequencies, the subharmonic regime disappears from
the pattern stability diagram. Qualitatively, the same effects
are found for other asymmetric wave forms or even at simple
sawtooth excitation. We focus on piecewise constant excita-
tion wave forms here, because they allow to integrate the
dynamic equations analytically.

Figure 2 shows typical diffraction images, taken slightly
above the threshold voltageUl,th for pattern onset(see, Fig.

3), compared to microscope images at the same driving pa-
rameters. The particular values ofUh were chosen to portray
the conductive[Figs. 2(a) and 2(b)], subharmonic[Figs. 2(c)
and 2(d)], and dielectric[Figs. 2(e) and 2(f)] regimes. A full
periodldir of w̃ and q̃ corresponds to two dark/bright stripe
pairs in Figs. 2(b) and 2(d), but to one stripe pair in Fig. 2(f)
[7]. Fast intensity modulations due to the oscillation ofwstd
are averaged by the camera. The charge field is not acces-
sible with this setup, but owing to the coupling betweenq̃
and w̃, the director deflection modewstd provides sufficient
information to characterize the pattern amplitude dynamics.

The diffraction angleun of the nth-order reflex corre-
sponds to the wave numberkx=2p sin un/ snlLd. An analysis
of light propagation in periodic weakly distorted director
fields yields an intensityInstd~wstd2n of even order reflexes,
originating mainly from the phase grating[11]. Odd order
reflexes, essentially caused by the amplitude grating, are
more complexly related to the director deflections. There-
fore, we extract the pattern dynamics from the intensity of
the second-order reflex,I2std~wstd4.

The stability diagram in thesUl ,Uhd plane is shown in
Fig. 3. The experimental thresholds are determined by slowly
increasingUl at fixedUh. At the transitions between the re-
gimes, the selected wave numbers jump discontinuously.
More important, however, is the change of the temporal char-
acteristics ofwstd. Figures 4(a), 5(a), and 6(a) depict I2std at
the positions marked by arrows in Fig. 2; they have been
normalized to the same maximum. In addition, the excitation
wave form and calculatedwstd and qstd (see below) are
shown in the bottom part(b) of each figure.

For calculation of the onset of EHC, we analyze the sta-
bility of the linearized electrohydrodynamic equations[4,14]
with the mode ansatz of Eq.(1). This reduces the dynamic
model to a system of two coupled ordinary differential equa-
tions in the system variables,

FIG. 2. Laser diffraction patterns(a),(c),(e) and microscope im-
ages(b),(d),(f) observed at in-phase superposition of two square
waves,sf l =80 Hz, fc, fh=320 Hzd, for three representative volt-
agesUh. The amplitudeUl is chosen immediately above the thresh-
old Ul,th for the onset of convection. In the subharmonic regime
(c),(d) the pattern is slightly oblique already at onset. Arrows in the
diffraction images mark the positions of the photodiode used for the
recording of the trajectories shown in Figs. 4(a), 5(a), and 6(a).
Only one wing of the symmetric diffraction image is shown.

FIG. 3. Measured threshold voltages for the pattern onsetsPd
and selected wave numbersssd for in-phase superposition off l

=80 Hz andfh=320 Hz square waves. The convection-free ground
state is surrounded by a conductive(a), a subharmonic(b), and a
dielectric regime(c). The selected wave numbers jump at the tran-
sitions between these regimes. Circles mark the parameterssUl ,Uhd
where the images of Fig. 2 have been taken. Dashed lines show
calculated thresholds and wave numbers extracted from the(global)
minimum of the neutral curveN in the sUl,kxd plane for givenUh

(cf. Fig. 7).
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d

dt
zWstd + S 1/Tq sHEstd

aEstd L1 − L2Estd2DzWstd = 0, s2d

zWstd=(qstd ,cstd)T, with c̃sx,z,td=]xw̃sx,z,td→cstd=kxwstd.
The coefficients are defined in[14] (in the cgs system), they
contain material parameters and the wave numberkx of the
respective test modes.Estd=Ustd /d is the electric field
strength. For symmetric square or sine wave excitations with

amplitude Uth and periodT, the Floquet analysis predicts
asymptotic solutions with periodT, as they are found in the
common EHC experiment. The asymptotic stability ofzWstd
→el1tzWs0d is defined by the Floquet exponentl1PC with the
largest absolute real part. The contour of the real part
Rehl1sU ,kxdj=0 defines the neutral curveN, and the global
minimum with respect toU of the neutral curve,sUth,kthd,
yields the threshold voltage and the selected wave number.

At square-wave excitation, and superpositions of such
wave forms, the electrical field is constant between consecu-
tive jumps atti andti+1. During intervals with constantE, Eq.
(2) has constant coefficients and the propagation fromzWstid to
zWst+ tid is given by a real 232 matrix P

FIG. 4. (a) Normalized intensityI2std [—in (a)] with the same
excitation parameters as in Fig. 2(a) and 2(b), measured with a
photodiode.(b) Excitation wave form, calculatedwstd [in sradd,
solid line], and calculatedqstd rescaled witha=20 cm3kth [in
sg1/2 cm−3/2 s−1d,- - -]. In the calculation, the sameUh, the corre-
sponding theoretical thresholdUl,th=18.1 V, and selected wave
numberkth=0.3 mm−1 have been used. Independent of their initial
values,wstd andqstd reach the asymptotic dynamics shown after a
few periodsTl =1/ f l. Characteristic for the conductive regime,wstd
keeps its sign. The calculatedwstd4 curve[dotted line in(a)] in the
top figure is mostly covered by the experimentalI2std graph.

FIG. 5. Same as in Fig. 4, but with parameters of Fig. 2(e) and
2(f), Uh=55 V. Characteristic for the dielectric regime,wstd alter-
nates its sign with the frequencyfh, the pattern is periodic withTl.

FIG. 6. Same as in Fig. 4, but with parameters of Fig. 2(c) and
2(d), in the subharmonic regime atUh=40 V. Bothwstd andqstd are
periodic with 2Tl =2/ f l, they change sign with periodTl.

FIG. 7. Density plot of the calculated growth rate Resl1d for the
in-phase superposition of 80 and 320 Hz square waves. The thresh-
old voltageUl,th and selected wave numberkth are defined by the
global minimum inUl of the neutral curveN s—d. At Uh=0, re-
gions of the conductive(a) and the dielectric(c) patterns are sepa-
rated by the singularitySs−•−d, where Resl1d→−`. With increas-
ing Uh, the subharmonic pattern region(b) appears, and whenUh

exceeds<25 V, it provides the global minimum ofN. Between the
two branches ofS, the eigenvalues of the propagator matrixP are
negative, el1Tl ,0. At Uh above<50 V, the dielectric pattern(c)
provides the global minimum ofN.
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zWstd = PsE,kx,t − tidzWstid, ti ø t ø ti+1. s3d

For pure square-wave excitation with periodT, the propaga-
tion of zWstd at t=nT can be expressed by a chain of equal
matrix products ofPs=PssE,kx,T/2d, s= ±1,

zWsnTd = fPs−dPs+dgnzWs0d. s4d

In the case of an in-phase superposition of two commen-
surate square waves withEstd=slEl +shEh and periodsTh

andTl =2mTh,mPN, the propagation is given by products of
Pslsh=PsslEl +shEh,kx,Th/2d, sl/h= ±1

P = fPs−−dPs−+dgmfPs+−dPs++dgm s5d

zWsnTld = Pn zWs0d. s6d

Equation(3) provideszWstd at intermediate times. The Floquet
multiplier m1=expsl1Tld and the exponentl1 follow imme-
diately from the eigenvalueE1 of P with the largest absolute
value [12], l1sUl ,Uh,kxd=s1/TldlnsE1d. For the pure square
wave, both eigenvalues ofPs−dPs+d are real and positive, and
zWstd is periodic withT. The same is found for the superim-
posed fields in regions(a) and (c) of Fig. 7. In the subhar-
monic regime[(b) in Fig. 7], both eigenvalues are ofP nega-
tive but Resl1dù0.

In summary, a new convection regime with subharmonic
dynamics has been discovered. A necessary condition for the
appearance of this regime is obviously the asymmetry of the
excitation in the two half-periods of the driving field. How-
ever, Figs. 4 and 5 prove that this condition is not sufficient.
The experimental observations are confirmed quantitatively
by a Floquet analysis of the linearized dynamic model equa-
tions. The wave number of the subharmonic pattern depends
on both superimposed frequencies; the choice of these fre-
quencies allows us to produce convection patterns in a con-
tinuous range of wavelengths, between those of the conduc-
tion and dielectric regimes. Preliminary results show that the
wave number decreases with increasing container dimen-
sions, but is weaker than in the conduction regime. It is
interesting to compare these results with other dissipative
pattern forming systems. In the Faraday instability, the typi-
cally primary pattern is subharmonic, but in two-frequency
forcing, a couple of new pattern structures have also been
observed[15]. Subharmonic response has also been de-
scribed in the periodically forced oscillatory Belousov-
Zhabotinsky reaction[16], or for the parametrically driven
pendulum[17].
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stimulating discussions.
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