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Preparation of subharmonic patterns in nematic electroconvection
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Nematic electroconvection is studied under asymmetric periodic excitation with a driving electric field
E(t)=E(t+T) # -E(t+T/2). A new dynamic regime, distinguished by subharmonic dynamics, is discovered in
the pattern state diagram between conventional conductive and dielectric regimes. The spatial and temporal
pattern characteristics are investigated experimentally. The dynamics, threshold fields, and selected pattern
wavelengths at onset, calculated from a Floquet analysis of the linearized electrohydrodynamic equations with
a test mode ansatz, are in good agreement with experimental results.
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We study the dynamic response of a classical dissipative(t). In the low-frequency(conductive regime, the charge
pattern-forming system, electrohydrodynamic convectiordensityq(t) alternates with the excitation, the director deflec-
(EHC) in nematics, to time-periodic excitation. The linear- tion preserves its sign. In the high-frequen(dyelectrio re-
ized dynamic equations in such a system provide informatiogjime, the situation is reverseg(t) alternates with the exci-
about the stability of thguniform) ground state. Floquet tation (see, e.g., time-resolved observations[@7]), and
analysis is a standard tool for the characterization of periodiq(t) keeps its sign. In the conductive regime, similar to other
cally driven dynamic systems, it yields the asymptotic stabil-convective instabilities, the selected wave numgr =/d
ity of time-periodic solutions. If one of the Flogquet multipli- s essentially determined by the container dimension. In the
ers, depending upon the control parameters, passes +1,dglectric regimeky, is usually much higher, depending on
harmonic response in the system variables is expected. If {liscous, elastic, and electric material properties. Both re-
passes —1, the response is subharmonic. It has been shO\gﬁ\nes are well separated at the cutoff frequefigyusually
that in a large class of systems, symmetric excitafildt)  with a jump ofky,. So far, no subharmonic patterns have been
=A(t+T)=-A(t+T/2), e.g., driving with sine or square reported in nematic EH(S].
waves of amplitudé\ and periodT], suppresses subharmonic  In our experiments, the cell gap &=20.2um. Planar
dynamics[1,2]. director alignment along is achieved by a polyimid coating

EHC represents a canonical system in dissipative pattersf the glass and rubbing. A fixed sample temperature of
formation. Recent topics of interest include, among others30°C is controlled with a Linkam TMS 600 hot stage. The
aspects of spatial symmetry breaking, localized states, or emesogenic materiaMischung 5 a mixture of phenylben-
fects of low dimensionality{3]. The easy manipulation of zoate derivativeg9], is nematic from room temperature to
control parameters, convenient time scales, and straightforz0.5°C. Most of the involved material parameters are known
ward observation techniques, among other advantages, have
triggered its comprehensive investigation in the pést a

review, see e.g., Ref4]). Above a critical driving voltage, ;80
the Carr Helfrich mechanisifb] leads to spatially periodic =
director deflectiongp out of the alignment direction in a 5550 o
planar nematic cell. They are coupled to a periodic modula- o 2 :EL
tion of the electric charge densityin the cell plane. Striped & —
patterns appear as the first instability in most cases. They ca’g 40 &:
be described by a test mode ansatz o 18
(]
%(x,2) = ¢(t)cosk, xcosk, 2), £ X
= g
[
G(x,zt) = q(t)sin(k, x)cogk, z). 1) % 150 300 750 (U

Coordinatesx, y are in the cell planez is along the cell frequency £ [Hz]

normal. The ChOiCE ok,=/d satisfies the planar anchoring FIG. 1. Measured threshold voltagé®) and selected wave
at the glass platesy(x, d/2,1) :_0’ Wh(_ared is the ce_II gap, numbers(O) for EHC at a single-square-wave excitation. The cell
and kx=_277/)\dir reflects the spatial _|oer|0)dd_ir of the director gap is 20.2um. At the cutoff frequencyf.=115 Hz, the selected
deflection pattern. At the conventional sine or square-waveave number jumps from 0.4 to 1/m™. The calculated thresh-
single-frequency excitation, the symmetry of the coupling ofpid voltages and wave numbefs-) correspond to theglobal
the two system variable§], ¢) leads to two observable re- minimum of the neutral curves determined from a linear stability
gimes(Fig. 1), distinguishable by the dynamics qft) and  analysis of the electrohydrodynamic equations.
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and selected wave numbef®) for in-phase superposition df

FIG. 2. Laser diffraction pattern®),(c),(e) and microscope im- =80 Hz andf,=320 Hz square waves. The convection-free ground
ages(b),(d),(f) observed at in-phase superposition of two squarestate is surrounded by a conducti@®, a subharmonigh), and a
waves,(f, =80 Hz< f.< f,,=320 H2, for three representative volt- dielectric regime(c). The selected wave numbers jump at the tran-
agesUy,. The amplitudeJ, is chosen immediately above the thresh- sitions between these regimes. Circles mark the paraniéigid;)
old U, y, for the onset of convection. In the subharmonic regimewhere the images of Fig. 2 have been taken. Dashed lines show
(c),(d) the pattern is slightly oblique already at onset. Arrows in thecalculated thresholds and wave numbers extracted fror(gtbbal)
diffraction images mark the positions of the photodiode used for theminimum of the neutral curveV in the (U, k) plane for givenUy,
recording of the trajectories shown in Figgay 5(@), and Ga). (cf. Fig. 7).

Only one wing of the symmetric diffraction image is shown. ) . L
3), compared to microscope images at the same driving pa-

from independent experiments. Some unknown parametergameters. The particular values df, were chosen to portray
like the conductivity that varies slightly for individual cells, the conductiveFigs. 2a) and 2b)], subharmoni¢Figs. Zc)
were determined by fitting threshold voltages and wave numand 2d)], and dielectridFigs. 2e) and 2f)] regimes. A full
bers at single-frequency square-wave excitation to the med€riod g of @ andq corresponds to two dark/bright stripe
sured characteristicgl0,11). In detail, &,=5.6, £, =6.0, o  Pars in Figs. 2b) and 2d), but to one stripe pair in Fig.(®
=260s!, o/0,=15 a;=02gcmis?  y=-y, [7]. Fast intensity modulations due to the OS'CI||a'tI0n¢(§f)
=367gcmis?! p=4gcmlis? 5=04gcmis? areaveraged by the camera. The charge field is not acces-
K11=14.9X 107 g cm s2, K33=13.76x1077 g cm $? (cgs sible~with this setup, but owing to the coupling betwégn
units). The pattern dynamics is recorded using laser diffracand ¢, the director deflection mode(t) provides sufficient
tion [11]. The He—Ne laser beamwavelength A, information to characterize the pattern amplitude dynamics.
=632.85 nm is diffracted by phase and amp”tude gratings The diffraction angIeHn of the nth-order reflex corre-
formed by the periodically distorted director field. sponds to the wave numbk=2 sin 6,/(nk). An analysis

In order to simplify the determination of Floquet multipli- of light propagation in periodic weakly distorted director
ers in the theoretical stability analysis, it is advantageous tdields yields an intensity,(t) < ¢(t)*" of even order reflexes,
split the excitation wave form into piecewise constant partriginating mainly from the phase gratirjd1]. Odd order
[12]. In this paper, we generate an asymmetric wave fornreflexes, essentially caused by the amplitude grating, are
U(t)=U(t+T)#-U(t+T/2) of the excitation voltagdd by =~ more complexly related to the director deflections. There-
superposition of two commensurate square waves withodore, we extract the pattern dynamics from the intensity of
phase shiff13]: a low-frequency(f, < f.) square wave with the second-order reflex,(t) e ¢(t)%.
amplitude U,, and a high frequencyf,=4f,>f.)) square The stability diagram in th¢U;,U,) plane is shown in
wave with amplitudel;, [see graphs in Figs.(d), 5(b), and  Fig. 3. The experimental thresholds are determined by slowly
6(b)]. The experiments show that this has considerable corincreasingy, at fixed Uy. At the transitions between the re-
sequences for the dynamics of the system variables and tiggmes, the selected wave numbers jump discontinuously.
selected wavelength. A subharmonic regime is discoveredlore important, however, is the change of the temporal char-
both in experiment and numerical simulations. WHgris  acteristics ofe(t). Figures 4a), 5(a), and §a) depictl,(t) at
not an even multiple of;, or at a certain phase shift of the the positions marked by arrows in Fig. 2; they have been
two frequencies, the subharmonic regime disappears fromormalized to the same maximum. In addition, the excitation
the pattern stability diagram. Qualitatively, the same effectsvave form and calculated(t) and q(t) (see below are
are found for other asymmetric wave forms or even at simplsshown in the bottom paib) of each figure.
sawtooth excitation. We focus on piecewise constant excita- For calculation of the onset of EHC, we analyze the sta-
tion wave forms here, because they allow to integrate thdility of the linearized electrohydrodynamic equatigdsl4]
dynamic equations analytically. with the mode ansatz of E@l). This reduces the dynamic

Figure 2 shows typical diffraction images, taken slightly model to a system of two coupled ordinary differential equa-
above the threshold voltadé, , for pattern onsetsee, Fig. tions in the system variables,

025202-2



PREPARATION OF SUBHARMONIC PATTERNS IN.

1. 10

¢

:; P S

= 05

>

=

v

5

£ 00

@ 0.000 0.005 0.010 time ¢ [s]
1.0 =

R NN () =

= os 5

S |Ree oo 0

= o0 g - - L 0

OREl - H e N el 30

S .05 P Q(t) _60
1.0 g 0

(b) ~

FIG. 4. () Normalized intensityl ,(t) [—in (a)] with the same
excitation parameters as in Fig(a2 and 2b), measured with a
photodiode.(b) Excitation wave form, calculated(t) [in (rad),
solid ling], and calculatedy(t) rescaled witha=20 cmXky, [in
(g2 cm®2g71) - - -]. In the calculation, the samg,, the corre-
sponding theoretical threshold, (,=18.1 V, and selected wave
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FIG. 6. Same as in Fig. 4, but with parameters of Fig) 2nd

2(d), in the subharmonic regime &f,=40 V. Both¢(t) andq(t) are

periodic with 2I,=2/f, they change sign with period.

amplitude Uy, and periodT, the Floquet analysis predicts
asymptotic solutions with period, as they are found in the

numberk;,=0.3 um™* have been used. Independent of their initial Common EHC experiment. The asymptotic stability 20
values, ¢(t) andq(t) reach the asymptotic dynamics shown after a— €*1'Z(0) is defined by the Floquet exponente C with the
largest absolute real part. The contour of the real part
Re{\;(U,k,)}=0 defines the neutral curv¥, and the global
minimum with respect tdJ of the neutral curve(Uy,,kq),

few periodsT,;=1/f,. Characteristic for the conductive regimg()
keeps its sign. The calculatedt)* curve[dotted line in(@)] in the
top figure is mostly covered by the experimeritdt) graph.

l/Tq Oy E(t)

aE(t) A;- AE(1)? )2“) =0, @

d

az(t) + (
20 =(0t), ()T, with (x,2,0 =53 (X, 2,) — (1) =Ke(D).
The coefficients are defined ji4] (in the cgs systemmthey

contain material parameters and the wave nunkhef the
respective test mode<£(t)=U(t)/d is the electric field

strength. For symmetric square or sine wave excitations with
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FIG. 5. Same as in Fig. 4, but with parameters of Fig) 2nd
2(f), U,=55 V. Characteristic for the dielectric regime(t) alter-
nates its sign with the frequendy, the pattern is periodic witf,.

yields the threshold voltage and the selected wave number.

At square-wave excitation, and superpositions of such

wave forms, the electrical field is constant between consecu-
tive jumps at; andt;,;. During intervals with constari, Eq.

(2) has constant coefficients and the propagation fz@mto
Z(t+t;) is given by a real X 2 matrix P
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FIG. 7. Density plot of the calculated growth rate(Rg for the
in-phase superposition of 80 and 320 Hz square waves. The thresh-
old voltageU, 4, and selected wave numbky, are defined by the
global minimum inU; of the neutral curveV (—). At U,=0, re-
gions of the conductivéa) and the dielectri¢c) patterns are sepa-
rated by the singularitys(—+-), where R€\;) — —. With increas-
ing Uy, the subharmonic pattern regidh) appears, and whed,
exceeds=25 V, it provides the global minimum of/. Between the
two branches o8, the eigenvalues of the propagator matfbare
negative, &T<0. At U,, above=~50 V, the dielectric pattertic)

provides the global minimum of/.
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Z(t) =P(E, kot —t)Z(t), t<t=<ty,. (3) In summary, a new convection regime with subharmonic
dynamics has been discovered. A necessary condition for the
For pure square-wave excitation with periddthe propaga- appearance of this regime is obviously the asymmetry of the
tion of Z(t) at t=nT can be expressed by a chain of equalexcitation in the two half-periods of the driving field. How-

matrix products oP’=P(cE, k,,T/2), o=+1, ever, Figs. 4 and 5 prove that this condition is not sufficient.
The experimental observations are confirmed quantitatively
Z(nT) =[POPHZ(0). (4) by a Floquet analysis of the linearized dynamic model equa-

) » tions. The wave number of the subharmonic pattern depends

In the case of an in-phase superposition of two commengn hoth superimposed frequencies; the choice of these fre-
surate square waves Withi(t)=o|E +0\Ep, and periodsT,  quencies allows us to produce convection patterns in a con-
andT,=2mT,,me N, the propagation is given by products of tinuous range of wavelengths, between those of the conduc-

PAMN=P(aE + 0B, Ky, Th2), oyn=%1 tion and dielectric regimes. Preliminary results show that the
wave number decreases with increasing container dimen-
P=[PCIpEHpptm (5)  sions, but is weaker than in the conduction regime. It is

interesting to compare these results with other dissipative
pattern forming systems. In the Faraday instability, the typi-
cally primary pattern is subharmonic, but in two-frequency
forcing, a couple of new pattern structures have also been
observed[15]. Subharmonic response has also been de-
scribed in the periodically forced oscillatory Belousov-
Zhabotinsky reactiori16], or for the parametrically driven
pendulum[17].

Z(nT)) =P"Z0). (6)

Equation(3) providesZ(t) at intermediate times. The Floquet
multiplier u,=exp(\4T;) and the exponent; follow imme-
diately from the eigenvalug, of P with the largest absolute
value[12], \,(U,,U;, k) =(1/T)In(Ey). For the pure square
wave, both eigenvalues &~P™ are real and positive, and
Z(t) is periodic withT. The same is found for the superim-  The authors particularly acknowledge Jana Heuer and Fa-
posed fields in region&) and(c) of Fig. 7. In the subhar- bian Senf, who found the experimental evidence of the sub-
monic regime[(b) in Fig. 7], both eigenvalues are 6fnega-  harmonic EHC patterns. Ulrich Behn is acknowledged for

tive but Réx;)=0. stimulating discussions.
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